射频板条 CO2 激光器获得远场对称光束

研制了一台装有光学变换器的射频板条 CO₂ 激 光器 获得了远场对称分布的光束。其光束形状与 德国学者 R. R. Nowack 等绘出的理论分布图形及 实测图形完全吻合^[1]。

射频板条 CO₂激光器的电学结构及光学结构分 别示于图 1 和图 2。图 1 中将 350 mm × 52 mm 和 350 mm × 60 mm 铜制的上下板条波导电极 1 ,2 平行 放置 ,间距为 2 mm ,电极内部通有循环冷却水。两 电极的侧面分别连接 8 只并联电感 3 ,与激光等离 子体阻抗里的容性电抗产生并联谐振以改善射频放

图 1 射频板条 CO₂ 激光器电学结构示意图 1 板条波导上电极 2:板条波导下电极 3:并联电感 4:匹配网 络 5 冷却水输入 6 冷却水输出 7 激光器壳体 8 射频电源

Fig.1 Electrical structure diagram of RF excited

slab CO_2 laser

1 : upper slab waveguide electrode ; 2 : lower slab waveguide electrode ; 3 : parallel inductors ; 4 : match network ; 5 : cooling water input ; 6 : cooling water output ; 7 ; laser shell ; 8 : RF power supply

电的均匀性。一只输出 3.5 kW,120 MHz 的射频功 率源通过匹配网络 4 与板条波导电极 1 相连。网络 由一电感和两可变电容组成 π型 collins 滤波网络。 电极 2 与壳体 7 及地相连。输入射频功率后激发混 合气体,电极间出现均匀的辉光放电,为激光放大提 供增益。该结构已获得国家专利授权,专利号为 ZL 9623212273。射频板条 CO₂ 激光器的光学谐振 腔为虚共焦半非稳腔,由全反射的凹、凸圆柱面铜镜 2 3 构成,如图 2。镜子与波导电极的间距为 4 mm。 $R_{cancave}$ 为 4434 mm, R_{convex} 为 – 3276 mm, $\delta = 16\%$ 。 光学输出窗由 GaAs 制成,对 10.6 μ m 光有 99% 的透 过率。由输出窗出射的激光首先入射到光学变换器 凹柱面镜 4 ,然后入射到平面全反镜 5。在输入射频 功率 2 kW,激光混合气体比为 1:1:3 + 5% (CO₂: N₂: He + 5% Xe),充气压力为 140 mbar 时,连续波状态 运转,准分离式,获得激光功率 200 W。

由射频板条激光器输出的近场光束在有机玻璃 上烧蚀的图样如图 3。光束的远场烧蚀图样如图 4。

图 2 射频板条 CO₂ 激光器光学结构示意图 1 板条波导电极 2 *A* :凹柱面镜 3 :凸柱面镜 5 :平面镜; 6 激光器输出窗 7 激光器壳体 8 激光束

Fig. 2 Optic structure diagram of RF excited slab CO₂ laser 1:slab waveguide electrode ;2 A : concave cylindrical mirror; ;3 : convex cylindrical mirror; 5 : plane mirror; 6 : laser output window; 7 : laser shell ; 8 : laser beam

图 3 激光束在距离输出窗 240 mm 处的有机 玻璃上烧蚀出的近场图形

Fig.3 Pattern of near field of the laser beam burnt on an acryl glass located 240 mm from the output window

由波导光学原理所决定,从射频板条 CO₂ 激光 器输出窗射出的光束在远场发散成一长椭圆的光

作者简介 高允贵(1943.12—),男,江苏江都人 副研究员,主要从事气体激光器的研究,特别是各类射频激励 CO₂ 激光器的研究,包括射频激励快速轴流 CO₂ 激光器 射频板条 CO₂ 激光器和射频波导 CO₂ 激光器。E-mail collasers@163.com

斑。显然,这样的光束很难聚焦成一个对称的圆点, 无法用于激光材料加工。

图 4 激光束在距离输出窗 3700 mm 处的有机 玻璃上烧蚀出的远场图形

Fig.4 Pattern of far field of the laser beam burnt on an acryl glass located 3700 mm from the output window

射频板条 CO₂ 激光器输出窗前加装一个光学变 换器,凹柱面镜 R = 1500 mm,凹柱面反射镜将光束 波导方向压缩 ,经平面镜将光束转折 ,获得对称分布 的 CO₂ 激光光束 ,如图 5 所示。文献[1]中给出了 R. R. Nowack 等研制的对称输出射频板条 CO₂ 激光 器的输出特性以及测量的光束远场分布图和用计算 机计算出的光束近场及远场分布图。图 3 ,图 5 与 他们的测量结果及计算结果相比 ,说明我们研制的 激光器的光学质量与 R. Nowack 等的结果符合得很 好。

图 5 经光学变换器变换后的激光束在距离输出窗 3700 mm 处的有机玻璃上烧蚀出的远场图形

Fig.5 Pattern of far field of the laser beam after the optic conversion apparatus burnt on an acryl glass located 3700 mm from the output window

参考文献

1 R. R. Nowack , H. Opower , U. Schaefer $et\ al$. . High power CO2 waveguide laser of the 1 kW category [C]. SPIE , 1990 , $1276\ :18\sim 28$

(江苏长电科技股份有限公司 江苏江阴 214431) 高允贵 李向阳 秦立永 丁义国 胡 浩 朱永祥

收稿日期 2001-06-14; 收到修改稿日期 2001-07-16